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Abstract. Given a pencil of quartics, how many of the smooth fibers
contain a curve of given degree and genus? The solutions to these problems
for all degree and genus form the coefficients of an explicit modular form.
Following Maulik and Pandharipande (2013) we outline the proof of this
statement and state the modular form. The main technical result behind
the proof is a theorem of Borcherds on modularity of Heegner divisors.
We also state Borcherds’ theorem and summarize its proof. This theorem
applies not just to Noether–Lefschetz divisors on moduli of polarized K3
surfaces but to Heegner divisors in moduli spaces of hyperkähler varieties.

1. Introduction

These are the lecture notes for my talk in the Bonn–Paris seminar for the
“Moduli spaces of K3 surfaces and hyperkähler manifolds.” Although the long
term goal of our seminar is to understand the cohomology of moduli of hyperkähler
varieties, this talk will revolve around the solution to the following motivating
problem.

Motivating problem. Given a generic pencil of quartic surfaces in P3, how
many of the smooth quartics in the pencil contain a curve of degree d and genus h?

Bear in mind that the solution to this problem introduces us to many of the
ideas needed to tackle the hyperkähler case. For the first half of these notes, we
will discuss the solution to this problem. In the second half of these notes, we
will discuss the engine behind the proof (Borcherds’ theorem 3.3), which has a
broad range of applications.

The motivating problem has a classical appearance but is resistant to standard
techniques. Each (h, d) poses an enumerative problem, only the first few that
were previously solved. Using modern ideas, Maulik and Pandharipande [6] solve
this problem for all (h, d) at once! To give a few examples:

(h, d) (0, 1) (0, 2) . . . (2, 5) . . .
# 320 2008 . . . 136512 . . .

The full solution is given by the coefficients of (1.3.6), see also the expansion
below it.
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1.1. The Noether–Lefschetz divisors in moduli of polarized K3s. Let
F` be the moduli space of quasi-polarized K3 surfaces of degree `. An object in
this moduli space is a pair (S, v) where S is a K3 surface and v ∈ H2(S,Z) is the
first Chern class of an ample line bundle L on S with v2 = `. Recall that the
Noether–Lefschetz divisors are given by

(1.1.1) NLh,d = {(S, v) ∈ F` | ∃u ∈ H2(S,Z) v ·u = d, u2 = 2h−2}, h, d ∈ Z.

Roughly speaking, the locus NLh,d parametrizes polarized K3s (S,L) containing
a genus h curve that has degree d with respect to the line bundle L.

A family (π : X → C,L) of polarized K3s induces a map C → F` from the
base of the family to the moduli space. If C is a complete curve and C → F` is
generic enough then the number of fibers of π containing a curve of degree d and
genus h is exactly the number of intersection points of C and NLh,d. (This is
only a white lie and would be correct if stated carefully.)

The space F` is a smooth orbifold, so Weil divisors are Q-Cartier. In particular,
each NLh,d induces an element in PicQ(F`). We suppress the map C → F` from
notation and denote by C · NLh,d the degree of the pullback of NLh,d to C
(namely, the intersection number in F`).

The age old way to solve an enumerative problem such as computing C ·NLh,d
goes as follows:

(1) Find “simple” divisors E1, . . . , Er ∈ PicQ(F`) that form a basis.
(2) Express NLh,d in terms of Ei’s, that is, find ai ∈ Q such that NLh,d =∑r

i=1 aiEi.
(3) Compute C · Ei.

Traditionally, each of these is a geometric problem to be solved. Now, we will
use the arithmetic of modular forms to solve them for all (h, d) at once.

1.2. A non-reduced structure on the Noether–Lefschetz divisors and
their modularity. First, by making some of the components of NLh,d of mul-
tiplicity two, we can get another divisor Dh,d which is more “symmetric”. This
operation is invertible in the sense that knowing the intersection number of
C with D’s gives the intersection number for NL’s, and vice versa. See the
introduction of [6] for the precise definition of Dh,d’s. We emphasize that Dh,d is
supported on NLh,d. See Remark 1.4 for some intuition behind the multiplicities.

In the first half of these notes, one of our goals is to state the following theorem
of Borcherds precisely (See Theorem 2.4). We will also demonstrate how it can
be exploited to solve our motivating problem. In the second half, we will state it
in greater generality (Theorem 3.3) and summarize its proof.

Theorem 1.1 (Borcherds). The divisor classes Dh,d ∈ PicQ(F`) are the Fourier
coefficients of a vector-valued modular form.

Remark 1.2. In particular, for a complete curve C → F`, the degrees C ·Dh,d

form the Fourier coefficients of an “honest” vector-valued modular form.

1.3. Pencil of quartic surfaces, a case study. Let us now fix a generic pencil
of quartics P1 → |OP3(4)|, which gives a map P1 → F4. We now want to state the
recipe by which one can determine the intersection numbers P1 ·Dh,d. The recipe
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below already suggests that modularity is at play, even though it is currently
hidden.

Let ∆`(h, d) = d2 − `(2h− 2) and define a sequence {an}n∈ 1
8N

as follows:

(1.3.2) an =

{
P1 ·Dh,d if n = 1

8∆4(h, d),

0 otherwise.

Consider the following generating series

(1.3.3) ϕ(q) =
∑
n∈ 1

8N

anq
n.

Theorem 1.3 (Proposition 5, Maulik–Pandharipande). The power series ϕ(q)
is a homogeneous polynomial of degree 21 in

(1.3.4) A =
∑
n∈Z

qn
2/8 and B =

∑
n∈Z

(−1)nqn
2/8.

The first proof of this statement given by Maulik and Pandharipande is
somewhat ad hoc. We will see later that their second proof generalizes well to
other families of K3s.

To figure out exactly which polynomial in A and B equals ϕ(q), we need to
solve for 22 coefficients. Maulik and Pandharipande use Gromov–Witten theory
to solve for Noether–Lefschetz numbers on the quartic pencil with h = 0, this
gives them sufficiently many independent an’s to deduce the coefficients of the
polynomial in A and B.

The exact polynomial is

222ϕ(q) = 3A21 − 81A19B2 − 627A18B3 − 14436A17B4(1.3.5)
−20007A16B5 − 169092A15B6 − 120636A14B7

−621558A13B8 − 292796A12B9 − 1038366A11B10

−346122A10B11 − 878388A9B12 − 207186A8B13

−361908A7B14 − 56364A6B15 − 60021A5B16

−4812A4B17 − 1881A3B18 − 27A2B19 +B21.

Note, however, that the fibers of the quartic pencil also contribute to the count
here. But it is easy to correct this contribution. The following generating series
counts only the contribution from the smooth fibers:

(1.3.6) ϕ(q)− 108
∑
n∈Z>0

qn
2

.

Expanding out a few terms of (1.3.6), we get the following result:
-1 + 320*q^{9/8} + 5016*q^{3/2} + 76950*q^{2} + 136512*q^{17/8} + 640224*q^{5/2} +

3611400*q^{3} + 5329152*q^{25/8} + 15621984*q^{7/2} + 55656396*q^{4} +
74481216*q^{33/8} + 170398720*q^{9/2} + 462721896*q^{5} + 585601920*q^{41/8} +
1144302120*q^{11/2} + 2620503408*q^{6} + 3184479360*q^{49/8} +
5605653600*q^{13/2} + 11311490160*q^{7} + 13396110144*q^{57/8} +
21786141216*q^{15/2} + 40300330950*q^{8} + 46648372608*q^{65/8} +
71683494912*q^{17/2} + 123140741160*q^{9} + 140521096512*q^{73/8} +
205816117320*q^{19/2} + 335690102736*q^{10} + 377376426560*q^{81/8} +
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533634091200*q^{21/2} + 828581828328*q^{11} + 923347062720*q^{89/8} +
1263920168160*q^{23/2} + 1897438866000*q^{12} + 2091731874624*q^{97/8} + ...

Remark 1.4. Note that 320 is the number of quartics containing a line. But
5016 = 2×2008 is double the number of quartics containing a conic. Morally, this
is because a conic never appears alone but they appear in pairs (the plane spanned
by the conic will contain yet another conic). This counting with multiplicity is
more natural and it is the reason for introducing the non-reduced divisor Dh,d

supported on NLh,d.

2. A better modularity for Noether–Lefschetz numbers

We now explain the second proof of Maulik and Pandharipande. This results
in a more symmetric form, allowing for simpler computations that generalize
well.

2.1. The metaplectic group. Let SL2(R) = {A ∈ GL2(R) | detA = 1}. Note
that SL2(R) agrees with the symplectic group Sp2(R). The group SL2(R) admits
a unique unramified double cover Mp2(R) whose elements can be represented as
pairs (A, εA(τ)) where A =

(
a b
c d

)
∈ SL2(R) and εA(τ) =

√
cτ + d is one of the

roots of the linear function cτ + d on the upper half plane H. Multiplication is
given by

(2.1.7) (A, εA)(B, εB) = (AB, εA(B · τ)εB(τ))

where B · τ ∈ H denotes the usual action of SL2(R) on H.
The integral metaplectic group Mp2(Z) can be generated by two elements

(2.1.8) T =

((
1 1
0 1

)
, 1

)
S =

((
0 −1
1 0

)
,
√
τ

)
,

where
√
τ denotes the square root with positive real and imaginary part. The

action of Mp2(Z) on H has only a single cusp and that is i∞.

2.2. Vector-valued modular forms. For fixed (S, v) ∈ F`, let Λ = H2(S,Z)prim

be our fixed K3 lattice orthogonal to the polarization. Let Λ∨ ⊂ Λ⊗Z Q be the
dual of Λ. The intersection product on Λ extends Q-linearly to Λ∨, giving a
Q/2Z-valued form on the discriminant group Λ∨/Λ. Note that

(2.2.9) Λ∨/Λ ' Z/`Z.
Our modular forms will take values in the group ring of Λ∨/Λ, that is, in

(2.2.10) V
def
=C[Λ∨/Λ] = C〈v0, v1, . . . , v`−1〉.

Let ρ` : Mp2(Z)→ GL(V ) be the Weil representation:

ρ`(T )vj = eπiv
2

ej

ρ`(S)vj =

√
i√
`

`−1∑
k=0

e−2πivj ·vkek.

Because V has an obvious basis, we can identify V with its dual space. With this
identification, the dual of the representation ρ` will be denoted by ρ∗` : Mp2(Z)→
GL(V ).
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Definition 2.1. A modular form of weight k ∈ 1
2Z and type ρ` is a holomorphic

function f : H→ V such that

f(Aτ) = ε2k
A (τ)ρ`(A, εA)f(τ).

Since the vj is an eigenbasis of V with respect to T , we can write

(2.2.11) f(τ) =
∑
j

∑
n∈ 1

N Z

an,jq
nvj

where ρ`(TN ) = idV . If an,j = 0 for all n < 0 and j = 0, . . . , `− 1, then we say
f is holomorphic at infinity.

Definition 2.2. We denote by Mod(Mp(Z), k, ρ`) the space of modular forms
whose Fourier coefficients have finitely terms with negative exponent. Its subspace
of holomorphic modular forms are denoted by HolMod(Mp(Z), k, ρ`).

Remark 2.3. The space HolMod(Mp(Z), k, ρ`) is finite-dimensional because
it can be identified with the global sections of a vector bundle on a complete
modular curve.

2.3. Noether–Lefschetz numbers are modular. Fix ` and a any proper
curve C → F`. Recall ∆`(h, d) = d2− `(2h−2). We break the Noether–Lefschetz
numbers into ` groups and define

(2.3.12) bn,j =

{
C ·Dh,d if n = 1

2`∆`(h, d) and d ≡ j (mod `),

0 otherwise.

Now, for each j = 1, . . . , `− 1, we define the following generating series

(2.3.13) Φj(q) =
∑
n∈ 1

2`N

bn,jq
n.

Theorem 2.4 (Borcherds). There is a modular form of weight 21/2 and type ρ∗`
whose Fourier expansion at i∞ is

(2.3.14) Φ(q) =
∑̀
r=1

Φr(q)vr ∈ C[[q1/2`]]⊗ C[Λ∨/Λ].

The advantage of this point of view is that the space of vector-valued modular
forms, as it appears here, is much smaller than the scalar counterpart. Compare
the following lemma to the 22 dimensional problem we encountered earlier
for ` = 4.

Lemma 2.5 (Maulik–Pandharipande). For ` = 2, 4, 6, 8 the dimension of the
space HolMod(Mp2(Z), 21/2, ρ∗` ) is 2, 3, 4, 5 respectively. Moreover, we can give
a simple and explicit basis for these spaces.

Maulik and Pandharipande give an explicit basis in terms of Rankin–Cohen
brackets of Siegel theta functions and Eisenstein series. In other words, provided
we can compute a few of the initial coefficients of Φ(q), we can compute all
coefficients readily.
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We need so few coefficients now that the Gromov–Witten approach is overkill.
Classical geometry will be sufficient. The following three sources provide enough
initial conditions for all the four cases (` = 2, 4, 6, 8) above:

• The coefficient of q0v0 is the degree of the Hodge bundle.
• The coefficient of q1v1, corresponding to C · NL0,0, is the number of
“singular” fibers (i.e., polarization degenerates).
• The Castelnuovo bound restricts the genus of a space curve by its degree.
In particular, if h >

(
d−1

2

)
then C · NLh,d = 0. This gives a lot of zero

coefficients for free.

3. Borcherds’ theorem in general

We used Theorem 2.4 to deduce modularity of intersection numbers with
Noether–Lefschetz loci in quasi-polarized K3 surfaces. This is a special instance
of Theorem 3.3. The latter applies to intersection numbers of special divisors,
generalizing the Noether–Lefschetz divisors, in the moduli of hyperkähler varieties.

3.1. Heegner divisors. Let Λ be an even lattice of signature (2, s), s > 0. The
period domain is the semi-algebraic set

(3.1.15) DΛ
def
={[w] ∈ P(Λ⊗ C) | w2 = 0, w · w = 0}.

The dual of the lattice Λ is denoted by Λ∨ ⊂ Λ ⊗ Q. We fix a discrete group
Γ ⊂ O(Λ) fixing the discriminant D(Λ)

def
=Λ∨/Λ, where O(Λ) is the orthogonal

group of Λ. We will be interested in special divisors on the quotient YΓ
def
=Γ\DΛ.

Each x ∈ Λ∨ defines a hyperplane x⊥ ⊂ P(Λ ⊗ C) and consequently a
hyperplane section

(3.1.16) Dx
def
=D ∩ x⊥ = {[w] ∈ D | w · x = 0}.

The orbit of the Dx leads us to consider the following Heegner divisor on YΓ:

(3.1.17) yn,γ
def
=Γ\

 ⋃
x∈γ
x2=2n

Dx

 ,

where γ ∈ D(Λ) and n ∈ Q. If Dx is non-empty then x2 < 0, so we set y0,γ = 0
except for y0,0 which is defined to be Γ\ O(1).

Remark 3.1. When considering moduli of K3 surfaces, our Λ had signature
(2, 19). The Heegner divisors yn,γ correspond to the divisors Dh,d, where γ = d

mod ` and n = −∆`(h,d)
2` .

The Borcherds’ theorem we are alluding to can be summarily stated as below.
We will make it precise and outline its proof in this section.

Theorem 3.2. The Heegner divisors are the Fourier coefficients of a vector-
valued modular form.
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3.2. TheWeil representation. The group ring V def
=C[D(Λ)] of the discriminant

group D(Λ) admits a standard representation

(3.2.18) ρΛ : Mp2(Z)→ V

called the Weil representation. Using the notation from Section 2.2 it is defined
by:

ρΛ(T )vγ = eπiv
2

eγ

ρΛ(S)vγ =

√
i
s−2√

#D(Λ)

∑
δ∈D(Λ)

e−2πiγ·δeδ.

As before, we identify V with its dual and denote the dual representation by ρ∗Λ.
From now on ρ will denote either ρΛ or ρ∗Λ. The only cusp for these representations
is the one at i∞.

Depending on Λ, there is a minimal positive integer N such that

(3.2.19) ρ(TN ) = 1.

Then, any modular form f ∈ Mod(Mp2(Z), k, ρΛ) admits a Fourier series expan-
sion

(3.2.20) f(τ) =
∑
n∈ 1

N Z
γ∈D(Λ)

an,γq
neγ

where V = C〈eγ | γ ∈ D(Λ)〉, τ ∈ H and q = exp(2πiτ). Here q1/N should be
viewed as atomic, being the uniformizer of an appropriate quotient of H at the
image of i∞.

We will write Mod(Mp2(Z), k, ρ) for the modular forms on H that are mero-
morphic at the cusp. The space of modular forms holomorphic at the cusp are
denoted HolMod(Mp2(Z), k, ρ).

3.3. Explicit form of Borcherds’ theorem. Let us denote by λ the following
function on holomorphic modular forms that computes the Fourier coefficients at
i∞.

(3.3.21) λ : HolMod(Mp2(Z), k, ρΛ)→ C[[q1/N ]].

We can now state Borcherds’ theorem precisely. Define the formal power series

(3.3.22) Φ(q) =
∑

n∈ 1
N N, γ

y−n,γq
neγ ∈ Pic(YΓ)⊗ C[[q1/N ]]⊗ V,

where we identified each Heegner divisor with its divisor class in Pic(YΓ).

Theorem 3.3. The series Φ(q) is contained in

(3.3.23) Pic(YΓ)⊗ λ
(
HolMod(Mp2(Z), 1 + s

2 , ρ
∗
Λ)
)
.
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4. Outline of the proof of Borcherds’ theorem

4.1. Principal Heegner divisors. Let He(YΓ) = Z〈yn,γ | n, γ〉 denote the
group freely generated by the Heegner divisors. We will write PHe(YΓ) ⊂ He(YΓ)
for the subgroup of principal Heegner divisors. Naturally, there is an injection

(4.1.24) He(YΓ)/PHe(YΓ) ↪→ Pic(YΓ).

Remark 4.1. The image is denoted by PicNL(YΓ) in [1], because the Heegner
divisors are the Noether–Lefschetz divisors in the moduli of K3 surfaces.

Let us define a map that strips off positive terms from the Fourier expansion
of a modular form

(4.1.25) λ− : Mod(Mp2(Z), k, ρΛ)→ C[[q−1/N ]]⊗ V.

We also have an obvious surjective map

(4.1.26) ξ : C[[q−1/N ]]⊗ V � He(YΓ) : qneγ 7→ yn,γ .

The following remarkable theorem of Borcherds states that the Laurent tails of
meromorphic modular forms of weight 1− s/2 and type ρΛ record linear relations
between Heegner divisors modulo principal divisors.

Theorem 4.2 (Borcherds).

(4.1.27) ξλ− (Mod(Mp2(Z), k, ρΛ)) ⊂ PHe(YΓ).

Remark 4.3. The statement here is a simplified form of [3, Theorem 4.1] in
light of McGraw’s thesis work [7] which states that the space of meromorphic
forms here have a basis having only integer coefficients appearing in their Laurent
tails.

Remark 4.4. The proof of this theorem relies on Borcherds’ “theta lifting” in [2],
where he constructs explicit automorphic forms with poles and zeros consisting
only of Heegner divisors.

With certain restrictions on the lattice and the group Γ, all principal divisors
are obtained by Borcherds’ theta lifting.

Theorem 4.5 (Bruinier [4]). Suppose the lattice Λ contains two copies of the
hyperbolic plane with an even definite orthogonal complement. Let Γ be the largest
subgroup of O(Λ) that fixes the discriminant D(Λ). Then the containment in
Theorem (4.1.27) is an equality.

4.2. Duality. With ρ denoting either ρΛ or ρ∗Λ we define the following spaces:

Pow(ρ) = C[[q1/N ]]⊗ V(4.2.28)

Lau(ρ) = C[[q1/N ]][q−1/N ]⊗ V(4.2.29)

Sing(ρ) = Lau(ρ)/q1/N Pow(ρ).(4.2.30)

Recall the map λ from modular forms into Pow that expands out the Fourier
coefficients and the map λ− that extracts the Laurent tail of meromorphic
modular forms to Sing(ρ).
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Define the obstruction space to realizing Laurent tails as modular forms

(4.2.31) Obst(k, ρ) = Sing(ρ)/λ− (Mod(Mp2(Z), k, ρ)) .

There is a natural pairing

Pow(ρ)× Sing(ρ)→ C(4.2.32)
(f, g) 7→ constant coefficient of fg.(4.2.33)

Here we let the V ’s pair canonically so fg ∈ C[[q1/N ]][q−1/N ]. We read of the
coefficient of q0.

Theorem 4.6. The space Obst(2 − k, ρ) is dual to λHolMod(Mp2(Z), k, ρ∗).
In other words, λ−Mod(Mp2(Z), 2− k, ρ) and λHolMod(Mp2(Z), k, ρ∗) are the
annihilators of one another with respect to the natural pairing above.

Sketch of proof. There is a proper curve C, the compactification of a quotient of
the upper half plane, and a vector bundle F on C such that global sections of F
are identified with HolMod(Mp2(Z), 2−k, ρ). If D is a divisor on C supported on
the cusp then the global sections of F(D) are some of the meromorphic modular
forms with pole order bounded by the degree of D. The natural exact sequence

(4.2.34) 0→ F → F(D)→ F(D)|D → 0

gives rise to the following exact sequence

(4.2.35) 0→ H0(F)→ H0(F(D))→ H0(F(D)|D)→ H1(F)→ H1(F(D))→ 0.

Observe that the term H0(F(D)|D) is precisely the Laurent tails of meromorphic
forms. Moreover, with degD � 0, the last term H1(F(D)) vanishes as D
becomes very ample. Therefore, H1(F) is identified with the obstruction space
Obst(2− k, ρ).

Serre duality gives H1(F)∨ = H0(ωC ⊗ F∨). Since ωC has weight 2, the last
space is HolMod(Mp2(Z), k, ρ∗). �

Remark 4.7. This result implies that the dimension of the group of Heegner
classes He(YΓ)/PHe(YΓ) is finite. In fact, if the conditions of Theorem 4.5
hold, then its dimension is easily computed from the dimension of a space of
holomorphic modular forms.

4.3. Proving Theorem 3.3. Take g ∈ Mod(Mp2(Z), 1 − s/2, ρΛ), so that in
light of Theorem 4.2 its Laurent tail λ−(g) records the coefficients of a (finite)
linear combination of Heegner divisors that is principal. That is, if

(4.3.36) λ−(g) =
∑
n<0,γ

an,γq
neγ ,

then

(4.3.37)
∑
n<0,γ

an,γyn,γ ≡ 0.
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That means λ−(g) annihilates Φ(q) with respect to the natural pairing (4.2.32).
This too can be spelled out:

Φ(q) · λ−(g) =
∑
n<0,γ

(
yn,γq

−neγ
)
· (an,γqneγ)(4.3.38)

=
∑
n<0,γ

an,γyn,γ ≡ 0.(4.3.39)

It now follows from Theorem 4.6 that Φ(q) ∈ Pic(YΓ)⊗ λHolMod(Mp2(Z), 1 +
s/2, ρ∗Λ).
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